3.306 \(\int \frac{\cot ^2(c+d x) \csc ^4(c+d x)}{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=114 \[ -\frac{\cot ^5(c+d x)}{5 a d}-\frac{2 \cot ^3(c+d x)}{3 a d}-\frac{\cot (c+d x)}{a d}+\frac{3 \tanh ^{-1}(\cos (c+d x))}{8 a d}+\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a d}+\frac{3 \cot (c+d x) \csc (c+d x)}{8 a d} \]

[Out]

(3*ArcTanh[Cos[c + d*x]])/(8*a*d) - Cot[c + d*x]/(a*d) - (2*Cot[c + d*x]^3)/(3*a*d) - Cot[c + d*x]^5/(5*a*d) +
 (3*Cot[c + d*x]*Csc[c + d*x])/(8*a*d) + (Cot[c + d*x]*Csc[c + d*x]^3)/(4*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.137707, antiderivative size = 114, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.138, Rules used = {2839, 3767, 3768, 3770} \[ -\frac{\cot ^5(c+d x)}{5 a d}-\frac{2 \cot ^3(c+d x)}{3 a d}-\frac{\cot (c+d x)}{a d}+\frac{3 \tanh ^{-1}(\cos (c+d x))}{8 a d}+\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a d}+\frac{3 \cot (c+d x) \csc (c+d x)}{8 a d} \]

Antiderivative was successfully verified.

[In]

Int[(Cot[c + d*x]^2*Csc[c + d*x]^4)/(a + a*Sin[c + d*x]),x]

[Out]

(3*ArcTanh[Cos[c + d*x]])/(8*a*d) - Cot[c + d*x]/(a*d) - (2*Cot[c + d*x]^3)/(3*a*d) - Cot[c + d*x]^5/(5*a*d) +
 (3*Cot[c + d*x]*Csc[c + d*x])/(8*a*d) + (Cot[c + d*x]*Csc[c + d*x]^3)/(4*a*d)

Rule 2839

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\cot ^2(c+d x) \csc ^4(c+d x)}{a+a \sin (c+d x)} \, dx &=-\frac{\int \csc ^5(c+d x) \, dx}{a}+\frac{\int \csc ^6(c+d x) \, dx}{a}\\ &=\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a d}-\frac{3 \int \csc ^3(c+d x) \, dx}{4 a}-\frac{\operatorname{Subst}\left (\int \left (1+2 x^2+x^4\right ) \, dx,x,\cot (c+d x)\right )}{a d}\\ &=-\frac{\cot (c+d x)}{a d}-\frac{2 \cot ^3(c+d x)}{3 a d}-\frac{\cot ^5(c+d x)}{5 a d}+\frac{3 \cot (c+d x) \csc (c+d x)}{8 a d}+\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a d}-\frac{3 \int \csc (c+d x) \, dx}{8 a}\\ &=\frac{3 \tanh ^{-1}(\cos (c+d x))}{8 a d}-\frac{\cot (c+d x)}{a d}-\frac{2 \cot ^3(c+d x)}{3 a d}-\frac{\cot ^5(c+d x)}{5 a d}+\frac{3 \cot (c+d x) \csc (c+d x)}{8 a d}+\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a d}\\ \end{align*}

Mathematica [A]  time = 0.624266, size = 189, normalized size = 1.66 \[ \frac{\csc ^5(c+d x) \left (420 \sin (2 (c+d x))-90 \sin (4 (c+d x))-640 \cos (c+d x)+320 \cos (3 (c+d x))-64 \cos (5 (c+d x))-450 \sin (c+d x) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )+225 \sin (3 (c+d x)) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-45 \sin (5 (c+d x)) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )+450 \sin (c+d x) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )-225 \sin (3 (c+d x)) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )+45 \sin (5 (c+d x)) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )}{1920 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cot[c + d*x]^2*Csc[c + d*x]^4)/(a + a*Sin[c + d*x]),x]

[Out]

(Csc[c + d*x]^5*(-640*Cos[c + d*x] + 320*Cos[3*(c + d*x)] - 64*Cos[5*(c + d*x)] + 450*Log[Cos[(c + d*x)/2]]*Si
n[c + d*x] - 450*Log[Sin[(c + d*x)/2]]*Sin[c + d*x] + 420*Sin[2*(c + d*x)] - 225*Log[Cos[(c + d*x)/2]]*Sin[3*(
c + d*x)] + 225*Log[Sin[(c + d*x)/2]]*Sin[3*(c + d*x)] - 90*Sin[4*(c + d*x)] + 45*Log[Cos[(c + d*x)/2]]*Sin[5*
(c + d*x)] - 45*Log[Sin[(c + d*x)/2]]*Sin[5*(c + d*x)]))/(1920*a*d)

________________________________________________________________________________________

Maple [A]  time = 0.154, size = 208, normalized size = 1.8 \begin{align*}{\frac{1}{160\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{5}}-{\frac{1}{64\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}}+{\frac{5}{96\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}-{\frac{1}{8\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}+{\frac{5}{16\,da}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{5}{16\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}-{\frac{1}{160\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-5}}+{\frac{1}{64\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-4}}-{\frac{3}{8\,da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) }-{\frac{5}{96\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}}+{\frac{1}{8\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*csc(d*x+c)^6/(a+a*sin(d*x+c)),x)

[Out]

1/160/d/a*tan(1/2*d*x+1/2*c)^5-1/64/d/a*tan(1/2*d*x+1/2*c)^4+5/96/d/a*tan(1/2*d*x+1/2*c)^3-1/8/d/a*tan(1/2*d*x
+1/2*c)^2+5/16/d/a*tan(1/2*d*x+1/2*c)-5/16/d/a/tan(1/2*d*x+1/2*c)-1/160/d/a/tan(1/2*d*x+1/2*c)^5+1/64/d/a/tan(
1/2*d*x+1/2*c)^4-3/8/d/a*ln(tan(1/2*d*x+1/2*c))-5/96/d/a/tan(1/2*d*x+1/2*c)^3+1/8/d/a/tan(1/2*d*x+1/2*c)^2

________________________________________________________________________________________

Maxima [B]  time = 1.10291, size = 316, normalized size = 2.77 \begin{align*} \frac{\frac{\frac{300 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{120 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{50 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac{15 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac{6 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}}{a} - \frac{360 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} + \frac{{\left (\frac{15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{50 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{120 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac{300 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - 6\right )}{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}{a \sin \left (d x + c\right )^{5}}}{960 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^6/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/960*((300*sin(d*x + c)/(cos(d*x + c) + 1) - 120*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 50*sin(d*x + c)^3/(cos
(d*x + c) + 1)^3 - 15*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 6*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/a - 360*log
(sin(d*x + c)/(cos(d*x + c) + 1))/a + (15*sin(d*x + c)/(cos(d*x + c) + 1) - 50*sin(d*x + c)^2/(cos(d*x + c) +
1)^2 + 120*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 300*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - 6)*(cos(d*x + c) +
1)^5/(a*sin(d*x + c)^5))/d

________________________________________________________________________________________

Fricas [A]  time = 1.70407, size = 487, normalized size = 4.27 \begin{align*} -\frac{128 \, \cos \left (d x + c\right )^{5} - 320 \, \cos \left (d x + c\right )^{3} - 45 \,{\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) \sin \left (d x + c\right ) + 45 \,{\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) \sin \left (d x + c\right ) + 30 \,{\left (3 \, \cos \left (d x + c\right )^{3} - 5 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) + 240 \, \cos \left (d x + c\right )}{240 \,{\left (a d \cos \left (d x + c\right )^{4} - 2 \, a d \cos \left (d x + c\right )^{2} + a d\right )} \sin \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^6/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/240*(128*cos(d*x + c)^5 - 320*cos(d*x + c)^3 - 45*(cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1)*log(1/2*cos(d*x +
 c) + 1/2)*sin(d*x + c) + 45*(cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1)*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c)
 + 30*(3*cos(d*x + c)^3 - 5*cos(d*x + c))*sin(d*x + c) + 240*cos(d*x + c))/((a*d*cos(d*x + c)^4 - 2*a*d*cos(d*
x + c)^2 + a*d)*sin(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)**6/(a+a*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.42755, size = 252, normalized size = 2.21 \begin{align*} -\frac{\frac{360 \, \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right )}{a} - \frac{6 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 15 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 50 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 120 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 300 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{5}} - \frac{822 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 300 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 120 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 50 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 15 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 6}{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5}}}{960 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^6/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/960*(360*log(abs(tan(1/2*d*x + 1/2*c)))/a - (6*a^4*tan(1/2*d*x + 1/2*c)^5 - 15*a^4*tan(1/2*d*x + 1/2*c)^4 +
 50*a^4*tan(1/2*d*x + 1/2*c)^3 - 120*a^4*tan(1/2*d*x + 1/2*c)^2 + 300*a^4*tan(1/2*d*x + 1/2*c))/a^5 - (822*tan
(1/2*d*x + 1/2*c)^5 - 300*tan(1/2*d*x + 1/2*c)^4 + 120*tan(1/2*d*x + 1/2*c)^3 - 50*tan(1/2*d*x + 1/2*c)^2 + 15
*tan(1/2*d*x + 1/2*c) - 6)/(a*tan(1/2*d*x + 1/2*c)^5))/d